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Outline of the Course

1. Review of Probability
2. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA)
3. The Learning Problem and the VC Dimension
4. Training vs Testing
5. Nonlinear Transformation and Logistic Regression
6. Overfitting and Regularization (Ridge Regression)
7. Lasso Regression
8. Neural Networks
9. Convolutional Neural Networks
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Example: Sine Target

f : [−1,1]→R f(x) = sin(πx) unknown

We sample x uniformly in [−1,1] to
generate two training samples (N = 2)

Two models used for learning:

H0 : h(x) = b

H1 : h(x) = ax+ b

Which is better, H0 or H1?
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Approximation - H0 versus H1
Based on the two models and assuming we know f , try to find the two
functions that minimize the squared error:

H0 : h(x) = b H1 : h(x) = ax+ b
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Learning - H0 versus H1
In learning, we do not know f . We use the two examples (x1,y1),(x2,y2) to
learn the two functions that best fits the data.

H0 : midpoint
(
b= y1+y2

2

)
H1 : line passes through the two points

The result varies depending on the data points. We need bias-variance
analysis to evaluate our result (considering other possible data sets).
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Bias and Variance - H0
Repeating the process with many data sets, we can estimate the bias and the
variance.

Average hypothesis ḡ(x). In this case ḡ(x)≈ 0 that is close to the best approximation
computed using f .

bias: difference between red function ḡ(x) and blue function f .
var(x) is indicated by the gray shaded region that is ḡ(x)±

√
var(x)
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Bias and Variance - H1

Using the same data sets as before, for the second model we get

bias: difference between red function ḡ(x) and blue function f .
var(x) is indicated by the gray shaded region that is ḡ(x)±

√
var(x)
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The Winner is ...

bias = 0.50 var=0.25 bias=0.21 var=1.69
The simpler model wins by significantly decreasing the var at the expense of a

smaller increase in bias
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Lesson Learned

However, the var term decreases as N increases, so if we get a bigger data
set, the bias term will be dominant in Eout, and H1 will win.

Match the ‘model complexity’

to the data resources, not to the target complexity
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Approximation- Generalization Tradeoff
Balance between approximating f in the training data and generalizing on new
data.

Goal: small Eout→ good approximation of f out of sample.

More complex H =⇒ better chance of approximating f

Less complex H =⇒ better chance of generalizing out of sample

A more complex H better approximates f , however, it might be more difficult
for the algorithm to zoom in on the right hypothesis.

The ideal H is a singleton hypothesis set containing only the target function.

H = {f} ≡ Wining the lottery!
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Approximation-Generalization Tradeoff
Two different approaches:
I VC analysis (binary error): Eout ≤ Ein+ Ω .
I Ein→ Approximation
I Ω→ Generalization

The optimal model is a compromise that minimizes a combination of the
two terms.

I Bias-variance analysis (squared error): decomposing Eout into

1. How well H can approximate f
2. How well we can zoom in on a good h ∈H

We apply this analysis to real-valued targets and use squared error
(linear regression).
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Start with Eout

Eout(g(D)) = Ex[(g(D)(x)−f(x))2]

where Ex denotes the expected value with respect to x (based on P on X ).

Rid of the dependence on a particular data set by taking the expectation with
respect to all data sets:

ED
[
Eout(g(D))

]
= ED

[
Ex[(g(D)(x)−f(x))2]

]

= Ex
[
ED[(g(D)(x)−f(x))2]

]
Now, let us focus on:

ED[(g(D)(x)−f(x))2]
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The Average Hypothesis
To evaluate ED[(g(D)(x)−f(x))2]:

We define the ‘average’ hypothesis ḡ(x):

ḡ(x) = ED[g(D)(x)]

Imagine we generate many data sets D1,D1, · · · ,DK . We can estimate an
average function for any x by

ḡ(x)≈ 1
K

K∑
k=1

g(Dk)(x)

g(x) is seen as a RV, with the randomness coming from the randomness in the
data set.

For a particular x, ḡ(x) is the expectation of this RV.
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Using ḡ(x)

ED[(g(D)(x)−f(x))2] = ED[(g(D)(x)− ḡ(x) + ḡ(x)−f(x))2]
= ED[(g(D)(x)− ḡ(x))2 + (ḡ(x)−f(x))2

+2(g(D)(x)− ḡ(x))(ḡ(x)−f(x))]

Since ED[g(D)(x)] = ḡ(x), cross term cancels.

= ED[(g(D)(x)− ḡ(x))2] + (ḡ(x)−f(x))2



14/70

Bias vs Variance FSAN/ELEG815

Bias and Variance

ED[(g(D)(x)−f(x))2] = ED[(g(D)(x)− ḡ(x))2]︸ ︷︷ ︸
var(x)

+(ḡ(x)−f(x))2︸ ︷︷ ︸
bias(x)

var(x) is the variance of the RV g(D)(x) and measures the variation in the
final hypothesis depending on the data set.

bias(x) measures how much the average function that we would learn using
different data sets D deviates from the target function.

Therefore,

ED
[
Eout(g(D))

]
= Ex

[
ED[(g(D)(x)−f(x))2]

]
= Ex [bias(x) + var(x)]]
= bias+var
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bias = Ex
[
(ḡ(x)−f(x))2

]

Very small model (one hypothesis).
The final hypothesis g(D) will be the

same as ḡ, for any data set → var = 0.
The bias will depend solely on how well
this single hypothesis approximates the
target f , and unless we are extremely

lucky, we expect a large bias.

var = Ex
[
ED[(g(D)(x)− ḡ(x))2]

]

Very large model (all hypothesis). f ∈H. Different
data sets will lead to different hypotheses that agree

with f on the data set, and are spread around f in the
red region. Thus, bias≈ 0 because ḡ is likely to be

close to f . The var is large ( represented by the size of
the red region in the figure).

The Tradeoff:
H ↑ bias↓ var↑
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Expected Eout and Ein

Consider learning with a data set D of size N ,

the final hypothesis has a expected out-of-sample error ED
[
Eout(g(D))

]
and

expected in-sample error ED
[
Ein(g(D))

]
How do they vary with N?
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The Curves

Simple Model Complex Model

Note: the simple model converges more quickly but to a higher error. In both
models, Eout decreases while Ein increases toward the smallest error the
learning model can achieve in approximating f .
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VC versus Bias-Variance

In the VC analysis, Eout ≤Ein +Ω. In the bias-variance, it is assumed that, for every N , ḡ

has the same performance as the best approximation to f in the learning model.

Both capture the tradeoff: Approximation-Generalization
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Example - Linear Regression Case

Noisy target y = f(x) + ε= wTx+ ε
where ε represents noise with zero mean and variance σ2.

Data set D = {(x1,y1), · · · ,(xN ,yN )}

Linear regression solution: w = (XTX)−1XTy

In sample error vector = Xw−y

Out-of-sample error vector = Xw−y’

where y’ correspond to the output of the target function to the same inputs x
but with a different realization of the noise. y′ = f(x) + ε′
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Learning Curves for Linear Regression
Best approximation error = σ2

Expected in-sample error = σ2
(
1− d+1

N

)
Expected out-of-sample error = σ2

(
1 + d+1

N

)
Expected generalization error = 2σ2

(
d+1
N

)
d+ 1→ VC dimension in perceptron
d+ 1→ ‘degrees of freedom’ in regression.

Conclusion: the generalization error is a compromise between the ‘degrees of
freedom’ (complexity of the model) and the size of the dataset.
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Outline

I What is overfitting?

I The role of noise

I Deterministic noise

I Dealing with overfitting
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Illustration of Overfitting

I Simple target function → 2nd order
polynomial.

I Generate 5 data points (noisy).

I Solve regression problem → 5 points fit by
a 4th order polynomial.

Ein = 0
However, result does not match the target.

The complex model uses additional degrees of freedom to learn noise.

Overfitting: Process of picking a hypothesis with lower Ein and higher Eout.
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Overfitting vs Bad Generalization

Neural network fitting noisy data:
I Green curve: Running gradient descent

and evaluate Ein for each epoch.

I Red curve: Use test set to evaluate Eout
for each epoch.

I Generalization error (difference between
the two curves) is increasing.

Overfitting: Ein ↓ Eout ↑

Possible solution: Early stopping
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Case Study
Polynomial regression: x→ (1,x,x2, · · ·).

I 10th order target function +noise I 50th order target function (noiseless)

Data set D contains 15 data points.
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Two Fits for Each Target

Noisy low-order target (10th)

2nd Order 10th Order
Ein 0.05 0.034
Eout 0.127 9.00

Noiseless high-order target (50th)

2nd Order 10th Order
Ein 0.029 10−5

Eout 0.120 7680
The 10th order polynomial heavily overfits the data.
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An Irony of Two Learners
I Two learners O and R

I They know the target is 10th
order.

I O chooses H10

I R chooses H2.
I Give up implementing the true

target function.
I Best you can do considering #

data points (N ≥ 10dVC) Learning a 10th-order target (noisy)

Match the resources, rather than the target complexity.

Irony: The belief that the best results are obtained by incorporating as much
information about the target function as it is available.
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Learning Curves

Overfitting is occurring in the shaded region by choosing H10 which has better
Ein but worse Eout.

What matters is how the model complexity matches quantity and quality of
the data, instead of only matching the target function.
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A Detailed Experiment
Goal: Study impact of noise level σ2, target complexity Qf and number
of data points N .

y = f(x) + ε(x)︸ ︷︷ ︸
σ2

=
Qf∑
q=0

aqLq(x) + ε(x)(∗)

where ε(x) are iid standard Normal random variables.
Interesting targets → Li(x) : increasing complexity polynomials (Legendre
polynomials (∗)). aq’s selected independently from a standard Normal.

y =
Qf∑
q=0

αqx
q

︸ ︷︷ ︸
normalized

+ε(x) αq : sum of coefficients paired with xq

Rescale αi’s so that Eα,x[f2] = 1
(∗)A Legendre polynomial Li(x) has specific coefficients such that they are orthogonal.
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A Detailed Experiment
Goal: Study impact of noise level σ2, target complexity Qf and number
of data points N .
Example

y = f(x) + ε(x)︸ ︷︷ ︸
σ2

=
Qf∑
q=0

αqx
p+ ε(x)

I Noise level: σ2

I Target complexity: Qf = 10
I Data size: N = 15
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The Results
Fit the data set (x1,y1), · · · ,(xN ,yN ) using our two models:

H2: 2nd-order polynomials H10: 10th-order polynomials

Target: 10th order polynomial (noisy) Compare out-of-sample errors of
I g2 ∈H2
I g10 ∈H10

Overfit Measure:
Eout(g10)−Eout(g2)

More positive → More overfitting
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The Results
The colors map to overfit measure: Eout(g10)−Eout(g2)

Less overfitting when σ2 drops or N
increases (Qf = 20).

Less overfitting when Qf drops or N
increases (σ2 = 0.1).

Number of Data Points ↑ Overfitting ↓
Noise ↑ Overfitting ↑

Target Complexity ↑ Overfitting ↑
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Definition of Deterministic Noise (DN)

Part of f that H cannot capture: f(x)−h∗(x)

Why called “noise”?

Similarities with stochastic noise:
I It cannot be modeled.
I Trying to learn model it results in

overfitting and a spurious final
hypothesis.

Differences with stochastic noise:
I DN depends on H (↑ Complexity ↓

DN )
I DN is fixed for a given x.

For a given learning model, there is a
best approximation h∗ to the target

function f .

Shading area: Deterministic noise.
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Impact of “Noise”

Number of Data Points ↑ Overfitting ↓
Stochastic Noise ↑ Overfitting ↑

Deterministic Noise ↑ Overfitting ↑
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Deterministic Noise- Impact on Overfitting
Deterministic noise and target complexity Qf

I As Qf increases, deterministic
noise increases.

I Why overfit starts at Qf = 10?
H10 cannot completely capture
targets of order greater than 10
(Deterministic Noise).

I For a finite N : H tries to fit
stochastic and deterministic noise.

Eout(g10)−Eout(g2)

How much overfit
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Noise and Bias-Variance

For f a noiseless target:

ED[(g(D)(x)−f(x))2] = ED[(g(D)(x)− ḡ(x))2]︸ ︷︷ ︸
var(x)

+(ḡ(x)−f(x))2︸ ︷︷ ︸
bias(x)

I The best approximation h∗ to the target function f is approximately the
‘average’ hypothesis ḡ.

I What if f is a noisy target?

y = f(x) + ε(x) E [ε(x)] = 0
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A Noise Term

ED,ε[(g(D)(x)−y)2] = ED,ε[(g(D)(x)−f(x)− ε(x))2]
= ED,ε[(g(D)(x)− ḡ(x) + ḡ(x)−f(x)− ε(x))2]
= ED,ε[(g(D)(x)− ḡ(x))2 + (ḡ(x)−f(x))2 + (ε(x))2

+cross terms]

Since ED[g(D)(x)] = ḡ(x), E[ε(x)] = 0 and ε is independent of others, cross
term cancels.
Taking Ex[·], i.e. average over all input space:

ED,x,ε[(g(D)(x)−y)2] =ED,x[(g(D)(x)− ḡ(x))2]︸ ︷︷ ︸
var(x)

+Ex[(ḡ(x)−f(x))2]︸ ︷︷ ︸
bias(x)

+Ex,ε(ε(x))2︸ ︷︷ ︸
σ2
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Actually, Two Noise Terms

ED,x,ε[(g(D)(x)−y)2] = ED,x[(g(D)(x)− ḡ(x))2]︸ ︷︷ ︸
var(x)

+Ex[(ḡ(x)−f(x))2]︸ ︷︷ ︸
bias(x)

+(ε(x))2︸ ︷︷ ︸
σ2

I σ2→ Stochastic Noise
I bias → Deterministic Noise

Captures model’s inability to approximate f .
I var → Variance of the model

Captures model’s susceptibility to being led in the wrong direction by the
two types of noise.

Size of set N ↑ var ↓.
Given a hypothesis set H, bias and σ2 are fix (irreducible error).
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Dealing with Overfitting
I Regularization: Putting the brakes.
I Validation: Checking the bottom line.
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Two Approaches to Regularization

I Mathematical:

I Ill-posed problems in function approximation (solved by smoothness
constrains).

I Bayesian Approach (prior knowledge). Assumptions might not be
realistic

I Heuristic:

I Constraining on the minimization of Ein
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A Familiar Example

f : [−1,1]→R f(x) = sin(πx) unknown

We sample x uniformly in [−1,1] to
generate two training samples (N = 2)

Two models used for learning:

H0 : h(x) = b

H1 : h(x) = ax+ b

Which was better, H0 or H1?
H0 beats H1
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A Familiar Example

Without Regularization:
Learned function varies extensively

depending on the data set.

With regularization:
The same data sets are less volatile.
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Bias-Variance Decomposition
var(x) gray shaded region (ḡ(x)±

√
var(x)).

Without Regularization:
bias = 0.21 var = 1.69

With regularization:
bias = 0.23 var = 0.33.

Regularized H1 also beats the constant model H0 (bias=0.50, var=0.25)
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Legendre Polynomials

Standard set of polynomials in one variable x ∈ [−1,1] with nice analytic
properties:

I Curves get more complex when order increases.
I Orthogonal to each other within x ∈ [−1,1].
I Any regular polynomial can be written as a linear combination of

Legendre Polynomials.
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The Polynomial Model
HQ : polynomials of order Q

HQ =
h

∣∣∣∣∣h(x) = wT z =
Q∑
q=0

wqLq(x)

w∈RQ+1

where z = [1,L1(x), . . .LQ(x)]T (Lq: Legendre Polynomials).

Using Legendre Polynomials, coefficients wq can be treated as independent
(dealing with orthogonal coordinates).

Note: h is linear in w → Apply Linear Regression in Z space.



45/70

Overfitting FSAN/ELEG815

Unconstrained Solution
Given (x1,y1), · · · ,(xN ,yN ) Φ−→ (z1,y1), · · · ,(z1,y1), · · · ,(zN ,yN )
where Φ : X →Z is a nonlinear transformation.

Ein(w) = 1
N

N∑
n=1

(wT zn−yn)2

= 1
N
||Zw−y||22

= 1
N

(Zw−y)T (Zw−y)

wlin = arg min
w∈RQ+1

Ein

= (ZTZ)−1ZT y
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Constraining the Weights
I Hard constraint: H2 is constrained version of H10 with wq = 0 for q > 2

I Softer version:
Q∑
q=0

w2
q ≤ C "soft-order" constraint

It encourages each weight to be small.
C determines the amount of regularization.
Larger C, weaker constraint → less regularization.

The optimization problems becomes:

wreg = argminw
1
N

(Zw−y)T (Zw−y) subject to: wTw≤ C
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wreg = argminw
1
N

(Zw−y)T (Zw−y) subject to: wTw≤ C

Define the soft-order-constrained hypothesis set H(C) by:

H(C) = {h|h(x) = wT z,wTw≤ C}

Goal: Minimize Ein over H(C).

If wTlinwlin ≤ C then wreg = wlin,

wlin ∈H(C)
(no regularization).
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If wlin 6∈ H(C), then we minimize Ein subject to the equality constraint
wTw = C

I w lies on the surface of the sphere
wTw = C with normal vector w.

I ∇Ein is the normal vector to the
quadratic surface of constant Ein.
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Note that Ein is minimum when:

∇Ein(wreg) ∝ −wreg

= −2 λ
N
wreg

∇Ein must be parallel to wreg but in
the opposite direction.

∇Ein(wreg) + 2 λ
N
wreg = 0

∇Ein(wreg + λ

N
wTregwreg) = 0

since ∇wTregwreg = 2wreg
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Augmented Error

Eaug(w) = Ein(w) + λ

N
wTw

wreg = argminw Ein(w) + λ

N
wTw unconditionally (Ridge Regression)

Solves:

wreg = argminw
1
N

(Zw−y)T (Zw−y) subject to: wTw≤ C

C ↑ λ ↓

I λ= 0 =⇒ C→∞ Least Squares Solution

I λ=∞ =⇒ C = 0 wreg = 0
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Ridge Regression
Given the data set (x1,y1), · · · ,(xN ,yN ), Ridge regression shrinkage fit
minimizes a penalized residual sum of squares,

ŵridge = arg min
w∈Rd

 N∑
i=1

(yi−w0−
d∑
j=1

xijwj)2 +λ
d∑
j=1

w2
j



= arg min
w∈Rd

||y−w0−Xw||22︸ ︷︷ ︸
Loss

+λ||w||22︸ ︷︷ ︸
Penalty

 ,
where ||w||2 is the `2 norm ||w||2 =

√∑d
j=1w

2
j .

Here λ≥ 0 is a tuning parameter, which controls the strength of the penalty
term.
I When λ= 0, we get the linear regression estimate.
I When λ=∞, we get wridge = 0.
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Ridge Regression

I For λ in between, we balance two ideas: a linear model of y on X, and
shrinking the coefficients.
Given

y = w0 +w1x1 +w2x2 +w3x3 + ...+wd−1xd−1 +wdxd+ ε.

I If the columns of X are centered, then the intercept estimate is ŵ0 = ȳ,
so we usually assume that y, X have been centered (zero mean) and
don’t include an intercept.

I The penalty term ||w||22 is unfair if the predictor variables are not on the
same scale. Variables are not measured in the same units, we typically
scale the columns of X (to have sample variance 1), and then perform
ridge regression.
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Ridge Regression
Credit data set: balance (average credit card debt for a number of
individuals), age, cards (number of credit cards), education (years of
education), income (in thousand of dollars), limit (credit limit), and rating
(credit rating).
Each curve corresponds to estimate for one of the seven variables.

I As λ ↑ , the ridge estimates
ŵk→ 0.
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Ridge Regression
The penalized residual sum of squares (PRSS):

PRSS = (y−Xw)T (y−Xw) +λ||w||22
PRSS = yTy−wTXTy+yXw−wTXTXw+λwTw

Differentiating with respect to w, we obtain,
∂PRSS

∂w = −2XT (y−Xw) + 2λw
∂PRSS

∂w = −2XTy+ 2XTXw+ 2λw

PRSS(w) is convex. Set the first derivative to zero,
−2XTy+ 2XTXw+ 2λw = 0

XTXw+λw = XTy
(XTX+λI)w = XTy

ŵridge = (XTX +λI)−1XTy.
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Ridge Regression

The ridge regression solution is

ŵridge = (XTX +λI)−1XTy. (1)

I Inclusion of λ makes problem non-singular even if XTX is not invertible.
I Solution indexed by the parameter λ
I For each shrinkage λ value, we have a solution.(path of solutions).
I λ controls the size of the coefficients and the amount of regularization.
I As λ→ 0, we obtain the LS solutions.
I As λ→∞, we have ŵridge

λ=∞ = 0.
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Ridge Regression
Setting R = XTX,

ŵridge
λ = (XTX +λId)−1XTy

= (R +λId)−1R(R−1XTy)
= (R(Id+λR−1))−1R ((XTX)−1XTy)︸ ︷︷ ︸

wls

= (Id+λR−1)−1R−1Rŵls

= (Id+λR−1)−1ŵls

I If X is orthonormal and XTX = Id, then:

ŵridgeλ = (XTX+λId)−1XTy
ŵridgeλ = (1 +λ)−1I−1

d Xy

ŵridgeλ = 1
1 +λ

ŵls.
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VC Formulation - Soft Order Constraint Error Minimization

For a given C, the soft-order constraint corresponds to selecting a hypothesis
from the smaller set:

H(C) = {h|h(x) = wT z , wTw≤ C}

If C1 < C2 then H(C1)⊂H(C2) and so dVC(H(C1))≤ dVC(H(C2)).

Thus, we expect better generalization with H(C1)

Conclusion: Better generalization when C decreases (λ increases).
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Varying λ

wreg = argminw Ein(w) + λ

N
wTw for different λ′s

The red fit gets flatter as we increase λ

The optimal regularization parameter typically depends on the data.
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Varying the Regularizer
Emphasis of certain weights:

Ω(w) =
Q∑
q=0

γqw
2
q

Examples:
I Low-order regularizer

γq = 2q Encourages a lower-order fit
I High-order regularizer

γq = 2−q Encourages a high-order fit

Tikhonov Regularizer:
wTΓTΓw
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The Optimal λ
Performance of the uniform regularizer at different levels of noise.

The optimal λ is highlighted for each curve.
Model: 15th order polynomials (H15).

Target: 15th order polynomial
(Qf = 15). For σ2 = 0, regularization
is not needed.

Zero stochastic noise (σ = 0). For
Qf = 15, regularization is not needed.

Note: The more noise there is, the more regularization is needed.
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Ridge Regression- Prostate cancer example

Correlation between the level of prostate-specific antigen and clinical measures
in men who were about to receive a radical prostatectomy: log cancer volume
(lcavol), log prostate weight (lweight), age, log of the amount of benign
prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log of capsular
penetration (lcp), Gleason score (gleason), and percent of Gleason scores 4 or
5 (pgg45). The correlation matrix of the predictors is:
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Ridge Regression- Prostate cancer example

Estimated coefficients and test error results, for different subset and shrinkage
methods applied to the prostate data. The blank entries correspond to
variables omitted.
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Prediction Error And The Bias-Variance Tradeoff

I Good estimators should have small prediction errors.
I Consider the PE at a particular point x0:

PE(x0) = σ2
ε + Bias2(f(x0)) + Var(f(x0)). (2)

I Bias-variance tradeoff.
I As model becomes more complex, local structure/curvature can be picked up.
I But coefficient estimates suffer from high variance as more terms are included in the

model.
I Introducing a little bias in estimate for β might lead to decrease in

variance, and to decrease PE.
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Ridge Regression
Bias-variance trade-off.

Squared bias (black), variance (green), and test mean squared error (purple).
I λ= 0, the variance is high but there is no bias.
I As λ increases, the variance decreases, at the expense of bias.
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50-th Year Anniversary of Ridge Regression
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50-th Year Anniversary of Ridge Regression

I In 1970, Technometrics published two articles by Art Hoerl and Bob
Kennard on the topic of Ridge Regression introducing this methodology to
the statistics community.

I No one, including the authors, suspected how impactful these articles
would ultimately turn out to be.

I It led to further developments in shrinkage estimation, such as Lasso
(Tibshirani 1996) and Elastic Net (Zou and Hastie 2005).
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Who Was Art Hoerl (AH)?
I Received his B.S. in Mechanical Engineering from

the University of Southern California (USC) in
1944.

I Upon graduation he was drafted in the army
I Because of his engineering background and high

scores on the Army math aptitude test, he was
reassigned to the Manhattan Project at Los
Alamos, New Mexico, working on bombing tables.

I He reentered USC, receiving an M.S. in
mathematics in 1950.

I Upon graduation, he became the first statistician
hired by the DuPont Company.

I In 1967, he left DuPont to join the University of
Delaware faculty.

I He retired in 1986, and passed
away in 1994.

AH’s background in engineering significantly impacted the way he approached
problems
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Who Was Bob Kennard (RK)?
I Graduated from Newark High School in 1940.

President and Valedictorian at Newark High.

I RK eloped with Helen Elizabeth Staats (Betty) in
nearby Elkton, Maryland (known for liberal
marriage laws).

I Bob served in the army in World War II. He
identified and intercepted Japanese radio signals
transmitted in high speed Morse Code.

I He graduated in 1949 with a B.S. in physics, and
M.S. in statistics in 1952 at University of
Delaware and received his Ph.D. in mathematical
statistics at Carnegie Technological University
(now Carnegie-Mellon).
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Who Was Bob Kennard (RK)?

I RK began his career with DuPont in 1955.
Eventually becoming the manager for the Systems
Engineering Division, within which the Applied
Statistics Group resided.

I He retired in 1982. He taught math and statistics
at Lake Sumter Community College for 10 years,
and passed away in 2011.

The Hoerl-Kennard team was grounded in engineering problem solving, natural
science, and also mathematical statistics. All three viewpoints required in the

development of Ridge Regression.
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Why is it call Ridge Regression
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